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and quartz windows. The quartz window can withstand
relative pressures up to 2 kg/cm? (we experienced
quartz failure once at 3.5 kg/cm? and once at 4
kg/cm?). The teflon window has already withstood a
relative pressure of 4.5 kg/cm? but further tests are
still in progress.

CONCLUSION

The principles of operation of a traveling-wave reso-
nator designed by the authors have been described.
Constituent elements have been discussed and the ap-
plication to high-power tests was mentioned. Now the
fact is stressed that power-handling testing is not the
sole application of traveling-wave resonators. This cir-
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cuit may also be used for other types of measurements.
For instance, in the case of optimum coupling, attenua-
tion introduced in the main waveguide is infinite and
variation of attenuation within main waveguide aorund
this value is very rapid. This can be applied to measure-
ment of low variations in attenuation when studying
surface treatments for waveguide, gas tube losses, etc.
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Reflection Coefficient of E-Plane Tapered Waveguides®

KATSU MATSUMARUT

Summary—This paper treats the reflection of linearly and sinus-
oidally tapered waveguides. In the first part, reflection coefficients
of linearly tapered waveguides for dominant modes are calculated.
Graphs of the vswr of tapers for different impedance ratios are
plotted showing that the vswr does not go to unity at multiples of a
half wavelength. In the second part, reflection coefficients of sinus-
oidally tapered waveguides are calculated. Experimental data verify
the theory for both kinds of tapers of various lengths at 4 kmc band.

Linear tapers perform almost as well as exponential tapers, and
better than shorter hyperbolic tapers. The reflection coefficients of
sinusoidal tapers can be about half as small as that of the linear
tapers, and these tapers compare favorably with the Dolph-Tcheby-
cheff and the Willis taper of improved design.

INTRODUCTION

EFLECTION coefficients of tapered waveguides
R can be calculated by formulas described in the
references,’? but these formulas give only rough
values. Reflections of several nonuniform transmission
lines were theoretically treated by Burrow,® Scott,*

* Manuscript received by the PGMTT, April 12, 1957; revised
manuscript received, October 29, 1957.

t Elec. Commun. Lab., Nippon Telegraph and Telephone Public
Corp., Tokyo, Japan.

1 T. Moreno, “Microwave Transmission Design Data,” McGraw-
Hill Book Co., Inc., New York, N. Y., p. 53; 1948.

2 G. L. Ragan, “Microwave Transmission Circuit,” McGraw-
Hill Book Co., Inc., New York, N. Y., M.I.T. Rad. Lab. Ser., vol. 9, p.
305; 1948.

s C. R. Burrow, “The exponential transmission line,” Bell Sys.
Tech. J., vol. 17, pp. 555--573; October, 1938.

4 H. J. Scott, “The hyperbolic transmissjon line as a matching
section,” Proc. IRE, vol. 41, pp. 1654-1657; November, 1953.

Klopfenstein,® Collin,®? Willis and Sinha,® Bolinder,®1?
and others. Most papers treat the magnitudes of re-
flection coefficient of particular tapers that are mathe-
matically convenient to analyze, but in microwave cir-
cuit we often need practical formulas and convenient
graphs to determine the reflection coefficients. Thesc
several papers are mainly theoretical, with very limited
experimental data on tapered waveguides.

In the first part of this paper, approximate theo-
retical calculations of the reflection coefficient of linear
tapers are presented. From the derived formulas, useful
graphs were compiled in terms of the suitable ratios of
input-to-output surge impedances. To confirm the for-
mulas experimentally at 4 kmc, we have made two
groups of tapers in which the ratios of surge impedances
are 2.0 and 2.4. The agreement between calculated and

5 R. W. Klopfenstein, “A transmission line taper of improved
design,” Proc. IRE, vol. 44, pp. 31-35; January, 1956.

s R. E. Collin, “The theory and design of wide-band multisection
quarter-wave transformer,” Proc. IRE, vol. 43, pp. 179-185; Feb-
ruary, 1955.
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8 J. Willis and N. K. Sinha, “Non-uniform transmission lines as
impedance transformers,” Proc. IEE, pt. B, vol. 103, pp. 166-172;
March, 1956.

* F. Bolinder, “Fourier transformers in the theory of inhomo-
geneous transmission lines,” Proc. IRE, vol. 38, p. 1354; November,
1950.

10 F, Bolinder, “Fourier transforms in the theory of inhomogene-
ous transmission lines,” Trans. Roy. Inst. Tech., Stockholm, No. 48
1951.
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measured values of reflection coefficient was found to
be very good.

A sinusoidally tapered waveguide may be used to
shorten the length of the taper. In the later part of this
paper general formulas for the reflection coefficients of
these tapers are described. To confirm the formulas, we
made a third group of tapers in which the ratio of input-
to-output surge impedance is 2.4. The calculated curve
of reflection coefficient of these tapers agreed very well
with that of the observed. Bolinder was the first to de-
rive accurate formulas for linear and sinusoidal tapers.
While his results are in terms of magnitude of the re-
flection coefficient, we have derived explicit formulas of
complex reflection coefficients of tapered waveguides.
By means of our practical charts, we can easily deter-
mine the exact reflection coefficient of a tapered wave-
guide.

CALCULATIONS AND CHARACTERISTICS OF
RerFLECTION COEFFICIENT OF LINEARLY
TaPERED WAVEGUIDE

In Fig. 1(a), W1 and W, are rectangular waveguides,
which are connected by an ZE-plane linear taper. The
surge impedances of W; and W, and the taper are Zi,
Zs, and Z(x), respectively. The origin of x is at the
longitudinal center of the taper, and the length of the
taper is [. Let us assume that the Z(x) is a linear func-
tion of the variable x and Z; is larger than Z,, viz.,

VA AN N
Z VA Zy— 7
Z(x) = lj 2—!— 2 ; . (2)

Furthermore, we assume that Zi, Zs, and Z(x) are
positive real. In Fig. 1(b) two transmission circuits
whose surge impedances are Z," and Zy’, are connected
by a step discontinuity. If the electromagnetic wave
propagates from left to right, the element of reflection
coefficient dR is given by (3) when Zi’ is only slightly
different from Z,'. It is

Zy —zZy dz¢{

dR = = :
Zy + 2z 2z/

3)

By considering the phase difference, we can obtain R of
the taper of Fig. 1(a) by the following integration pro-
cedure. With

Zas— 71
iz ="2""1 g
I
1 pue P8 G+2) Zo— 74
R=— . dx. (4)
2J e Zyv+ 7y, Zy— 27, l
2 + ! N
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Fig. 1—Illustration of the coordinate in a taper.

The wavelength in the taper, A, is constant, and B is
2w /A, Putting

_ Az—zy)
T AT,

(4) becomes

Zz - Zl t2
= ———f —— dx. (5)
(Zz + Zl>l —yz 14 qx

¢ (=+1/2)

As a first approximation, we consider (5) when ¢ is
negligibly small. In this case, the taper may be consid-
ered an exponential one. Then,

1 Zy | sin 2rl/A,) |

I R] =-—1In
2xl/N,

P (6)

This result is identical with the equation given by
Ragan.? Values of |R| derived from (6) show that the
reflection coefficient reduces to zero at the minimum
points. Eq. (6) is not applicable for general cases when
g is not equal to zero. To acquire a more accurate and
useful equation, we must integrate (5) by considering ¢
properly.
By using the approximate relation,

1
1+ g

=1 = gx+ ¢ (7
we have from (5)

sin BI-cos BI(1 + ¢%2/4)
+ (I cos B — sin BI/B)
X (—gsinBl/2 4+ g2 cos 8I/28)
sin? BI(1 + ¢%2/4)
—74 4+ (I cos BI — sin BI/B)
{ X (gcosBl/24 q?sinBl/28)

Zy — 7y

R=-—— "1 (8)
(Zs+ Z1)BL

This equation is identical with (6) when we put ¢=0.
From the explicit formula (8) we can easily calculate a
magnitude of R of a taper. Eq. (8) was derived on the
base of assumption (1). We mav also use this formula
for the case of Zy>Z,. However, except for extremely
short tapers, the calculated magnitudes of R are equal
for both the input and output sides.
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Placing values of Z;, Zs, and / in (8), we can calculate
the vswr of a taper from the relationship,

1+ | R
VEWE = —————— *
1-[R|
Fig. 2 shows graphs of calculated vswr’s for various
values of Z;/Z. It is to be noted that usually the re-
quired bandwidths for microwave systems are rela-
tively narrow, thus the method of design of a taper
will be mentioned here. Let us suppose that for a given
value of Z,/Z,, the vswr is as shown in Fig. 3. If the
allowable value of the vswr is ¢,, we draw a horizontal
line across ¢,. By estimating widths of AL;, AL, etc.,
we can determine the necessary length of the taper.
Now, we compare the reflection characteristics of
a linear taper with that of others. First, we com-
pare the lRI calculated from (8) with that given in
Bolinder’s paper.' In Table I, a very good comparison
is shown for the case of Zi/Z,=2.0. Bolinder’s for-
mula is expressed in terms of complicated Bessel func-
tions and gives only the magnitude of R. It is believed
that our formula for R in (8), being simpler and virtually
as accurate, will prove to be more practical for designing
of a taper. Next, Klopfenstein® described the perform-
ances of exponential, hyperbolic, and Dolph-Tchebycheft
coaxial tapers for the case of Z;/Z,=1.5. Fig. 4 com-
pares the performance of the linear taper with these

E I

0.2 0.3 0.4 0.5 0.6 0.7

I/Ng

0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.28 0.18 0.09 0.04 0.07

®

0.08

0.07 0.04 0.02 0.03 0.05 0.04 0.03

IR

Bolinder | 0.27 0.17 0.09 0.04 0.07

0.08

0.07 0.04 0.03 0.04 0.05 0.04 0.03

0.2

015

0.05

N
/\\ ~ |
TA N Xt LN

10 15
TAPER LENGTH/A,

2.0

Fig. 4—Performances of linear taper (Z1/Z:=1.5). a:hyperbolic,
b:exponential, ¢: Dolph-Tchebycheff, d:linear.

three other types. It is shown that the reflection of
a linear taper is not too different from an exponential
one. The reflection of the Dolph-Tchebycheff taper
is shown to be much better than the linear, but this
should be confirmed experimentally. The hyperbolic
taper is disadvantageous for waveguide applicatons.
Briefly the conclusion is that, in most cases, a linear
taper may be substituted for an exponential.

For microwaves applications, one should use a re-
flection formula of a tapered transmission line which
has been experimentally verified. The reasons are as
follows. Most theoretical formulas are approximations
derived on the bases of assumptions. For example, the
waves propagating in waveguides are not TEM in char-
acter. The definition of a surge impedance of a wave-

1 Bolinder, ibid., p. 67 (Fig. 27).
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guide is merely formal. Strictly speaking, the equivalent
circuit of a taper is composed of many reactances, and
hence it is frequency dependent. Moreover, higher
modes may be induced in the output or input terminals.
For example, Lewin® treated the reflection cancella-
tion at junctions between waveguides and horns. The
calculated values of reflection coefficient cannot be ac-
curate for extremely short tapers, of course, and it is im-
portant to determine the minimum lengths for which
the formulas may be used. For these reasons, we deter-
mined to get experimental data. We performed experi-
ments at 4 kmec, because this band is most convenient
in view of the precision of measurements available at
our laboratory.

ExrERIMENTS—PART [ (Z,/Z,=2.0)

For a dominant mode in a waveguide of constant
width a, the surge impedance is proportional to the
height £.1® The first experiments were made for the case
that Z»/Z: is 2.0, That is, the internal sizes, b and a, of
the waveguides were 58.1 mm X58.1 mm and 29.1 mm
X 58.1 mm. Lengths of tapers were from 17 cm to 2 cm
at intervals of 1 cm. Accuracy. of internal sizes in
the plane of flanges was approximately +0.2 mm. The
vswr was measured on the rectangular side using a
specially made sliding wooden dummy load on the
square side. The residual vswr of this dummy load was
approximately 1.01 at this band. We eliminated errors
due to this load by shifting its position. The law of the
crystal on the standing-wave device was measured. The
data were taken at a frequency of 4 kme (\,=9.82 cm).
Observed and calculated results are shown in Fig. 5, to-
gether with other data. Observed points shown by white
circles coincide well with the dashed curve for tapers
longer than 0.5 A,. The mean error in the vswr of the
tapers longer than 0.5 A\, was as small as 0.005. In this
example Z; is larger than Zi, so that, the calculated
magnitudes of vswr are not equal to the curve ¢ shown
in Fig. 2. However, the deviations of vswr from that
curve are extremely small. We may use Fig. 2 for this
example. It is believed that graphs of Fig. 2 are generally
inapplicable for tapers shorter than 0.5 A\g. So, it is im-
portant to determine the minimum lengths for which
other authors’ formulas may be used.

ExpErIMENTS—PART I (Z,/Z,=2.4)

We measured vswr’s of another group of tapers con-
necting waveguides with internal dimensions of 29.1 mm
X58.1 mm and 12.0 mm X358.1 mm, for which Z,/Z,
is almost 2.4. Lengths of this group are from 20 c¢cm to
3 cm at intervals of 1 cm. The constructional accuracy
of this group is not as good as the first group; namely
almost £0.35 mm. Measurements were made at a fre-

2 1. Lewin, “Reflection cancellation in waveguides,” Wireless
Eng., vol, 10, pp. 258-264; August, 1949.

8 A. Schelkunoff, “Electromagnetic Waves,” D. Van Nostrand
Co., Inc., New York, N. Y., pp. 316-322; 1943.
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quency of 3960 mc; that is, \, was almost 10.0 cm. Fig.
5 shows the results. Black circles show observed values
and the solid curve the calculated. In this group, again,
the results coincide well for tapers longer than 0.5A,.
Deviations are slightly greater than the first group; the
mean error of the vswr is as small as 0.008.

CaLcUuLAaTION OF REFLECTION COEFFICIENT
OF SINUSOIDALLY TAPERED WAVEGUIDE

We calculate the reflection coefficient of a sinusoid-
ally tapered waveguide for the dominant mode in the
same way as that for the linearly tapered waveguide.
The width @ of a rectangular waveguide is constant,
and its height & varies sinusoidally as shown in Fig. 6.
We assume that Z1, Z,, and Z(x) are positive real and
Zy is greater than Zs, thus,

Zy > Zs. 9

Z Z Zy— 2
Z(x) = T Tz ! cos <7r_x)
2 2 l

(10)

From (10),



1958

71'(22 -

dzZ(x) =
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X
sin <-—> dx.
l

Thus, if the electromagnetic wave propagates from left
to right, R of the taper in Fig. 6 can be obtained, after
considering the phase factor, from
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It is clear that (15) is a function of # and I/A,. As a check,
we put 7 =01n (14), and (15) is given by

1 Zo— 7, <21rl>
— COS { —
2 Zz—]— Z1 )\g

w(Zs — Z1) €127 gin (7rx/l)
T W+ Z Z de. (12) 2r 2l
(Z2+ 2) “r 7 os <ﬁ> X {cos <—~~]> —jsin< >}
e+t 7 ! Ag Ag
To evaluate this integral, we put - ir - ir
I B}
71— Zy ! Ao [ ! Ay l
L+ Z
As l,,[ is smaller than unity, we have In this equation, if / tends to zero, R becomes
1 : <7rx>
>~1 —vcos|—
T [ gf__é
1+ r cos 7 Z+ Zy
2 cos? | — 13
- xcos 1) (13) So, (15) converges to the reflection coefficient of two
directly connected waveguides. In Fig. 7, curves show
Using this approximate relation, we obtain vswr's for various values of Zi/Z,, corresponding to
those in Fig. 2. It should be mentioned that the curves
B w(Zs — Z1)f % sin I{ of the vswr do not go to unity at the minimum points
2l( Zo+ 7 and their maximum points ascend in accordance with
the ratios of Z,/Z,. As for a linear taper, Fig. 7 may be
-Jl —reos(™ + 1 cog? T\ g (14) used for the case of Zy>Z;. The reflection character
\ 1 l ' described in this chart shows clearly the very high qual-
ity of these tapers. It is mentioned that the vswi’s in-
On evaluating (14) we find crease suddenly for tapers shorter than 0.7Ag.
27 6w )
2wl r? l 7? !
cos? _~> 14— —
o 1 (47)2 <7r>2 4 <47r>2 <37r>2
[ A I Ay !
4
n ro, (27rl> !
— sin? [ —
2 g <47r>2 <27r>2
Zo— Z A !
_ 7T( 2 1) ] (15>
U(Zs+ Z)) 2 6w
e <27rl> <21rl) (1 N 7) L !
sin{ —— ) cos { — — e e —
I Ay Ay jl 4 <47r>2 < T >2 4 (471')2 <37r>2
l g ! o l
4r
" 7 !
2 <47r)2 <27r>2
Ao I
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Fig. 7—Curves show vswr’s of sinusoidally tapered waveguide as
the parameter of Z,/Z,. The impedance ratios are 1.3 to 3.8.
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Thus, for approximately equivalent performance, the
sinusoidal taper can be made about half as long as the
linear taper. Next, we compare the sinusoidal taper
with the taper which was described in Willis and Sinha’s
paper.” In this case, Z1/Z; is equal to 2.0. Fig. 8 shows
reflection coefficients of both tapers. The length of the
sinusoidal tapers is almost 0.65 \, for fRI equal to 0.042
as compared with 0.5 N, for the Willis taper, but this is
compensated by a faster reflection drop-off in the sinus-
oidal taper. Lastly, we compare the sinusoidal taper
with the taper which was described in Klopfenstein’s
paper.’® Fig. 9 shows reflection performances of both
tapers. The Dolph-Tchebycheff taper appears to be
somewhat better, but not by a major degree. Thus from
Figs. 8 and 9 we see that as to the reflection character,
a sinusoidal taper compares well with several kinds of
tapers designed by more difficult methods. Conse-
quently, for many applications the sinusoidal taper
would be preferable from the standpoint of design sim-
plicity coupled with adequate performance.

EXPERIMENTS—PART 111 (Z:/Z;=2.4)

As the second group, we experimented for the case
that Z,/Z, is 2.4. To confirm the formulas, it appears
most favorable to use taper lengths near the first mini-
mum point of the vswr curve, so that lengths from 0.5
Ay to 1.0 A, with intervals of 1 cm were used. The ac-
curacy of measurements was, on the whole, improved

TABLE 1I
I/ng ’ 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
| (15) 1.24 1.14 1.06 1.05 1.06 1.06 1.04 1.02 1.01 1.02 1.02
VSWR
] Bolinder 1.25 1.13 1.07 1.05 1.06 1.06 1.03 1.01 1.02 1.03 1.02
TABLE 111
Length (cm) 10 11 12 13 14 15 16 17 18 19 20
’ Linear. 1.04 1.07 1.10 1.09 1.05 1.02 1.05 1.07 1.06 1.04 1.02
VSWR
‘ Sinu. 1.06 1.04 1.02 1.01 1.02 1.02 1.02 1.01 1.01 1.01 1.01

CoMPARTISON WITH OTHER TAPERS

Now, for the case of Z,/Z,=2.0, we show the vswr’s
from (15) with those calculated from Bolinder’s paper'
in Table III. The agreement of the two sets of values is
very good. We next compare sinusoidal tapers with
linear tapers. As an example, let us consider a wave-
guide wavelength A, of 10 cm. The vswr of these two
tapers are given in Table III for Z,/Z, equal to 2.0.

* Bolinder, op. cit.,

Trans. Roy. Inst, Tech., Stockholm, p. 65
(Fig. 26).

compared to that of the two previous groups. Measure-
ments were also made at 3.96 kmc. The results are ex-
pressed in Table IV and show excellent agreement. As
shown by the curve d in Fig. 7, the observed values of
vswr yield a minimum near the taper length of 0.75 A
and a maximum near 0.9 \,. It is believed that the

mean error in the vswr of tapers longer than 0.8 A, is
about as small as 0.01.

15 Willis and Sinha, op. cit. (Fig. 3).
16 Klopfenstein, op. cit. (Fig. 6).
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Fig. 8—Reflection coefficient as a function of /X, for the example of

Willis and Sinha’s paper and sinusoidal taper. Solid line: sinus-
oidal, and dashed line: the Willis taper.

CONCLUSION

The reflection coefficient of a linearly and a sinusoid-
ally tapered waveguide can be calculated quite ac-
curately by (8) and (15), respectively. Except for ex-
tremely short tapers, the calculated magnitudes of R are
equal for both the input and output sides. For most
cases, however, we may directly determine vswr’s by
means of the graphs described in Fig. 2 and 7. Both the
observed values of the vswr of linear tapers longer than
0.5 A\, and sinusoidal tapers longer than 0.8 X\, coincide
with calculated values at most within the limit of 0.01.
The effect of neglecting higher terms in (8) and (15) is

very small, so that (8) and (15) are generally sufficient
for practical uses.

Matsumaru: Reflection Coefficient of E-Plane Tapered Waveguides

149
N
A HENEEEN
\\ \ a:DOLPH-TCHEBYCHEFF
\ TAPER
\\ b: SINUSOIDAL TAPER
a\ [\
g0.05 i\ \b
\
A
\ \/a ] I
P ~d /// \> =
00, 05 0 5
€//\?
Fig. 9—Reflection coefficient as a function of //x,; for the
Dolph-Tchebycheff taper and sinusoidal taper.
TABLE IV
1/)g | 05 l 0.6 |0.7 0.8 ] 0.9 ] 1.0
| obs. | 1.38 | 111 1.06 | 1.07 | 1.08 | 1.07
VSWR
| Cal. | 1.26|1.16| 1.08 | 1.07 | 1.08 | 1.07

The reflection performance of a linear taper is almost
as good as an exponential one, and a sinusoidal taper

is comparable to the Dolph-Tchebycheff and the Willis
taper of improved design.
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