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and quartz windows. The quartz window can withstand

relative pressures up to 2 kg/cm2 (we experienced

quartz failure once at 3.5 kg/cm2 and once at 4

kg/cm2). The teflon window has already withstood a

relative pressure of 4.5 kg/cm2, but further tests are

still in progress.

CONCLUSION

The principles of operation of a traveling-wave reso-

nator designed by the authors have been described.

Constituent elements have been discussed and the ap-

plication to high-power tests was mentioned. Now the

fact is stressed that power-handling testing is not the

sole application of traveling-wave resonators. This cir-
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cuit may also be used for other types of measurements.

For instance, in the case of optimum coupling, atten ua-

tion introduced in the main waveguide is infinite and

variation of attenuation within main wavegu’ide aorund

this value is very rapid. This can be applied to measure-

ment of low variations in attenuation when studying

surface treatments for waveguide, gas tube losses, etc.
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Reflection Coefficient of E4%me Tapered Waveguidesw
KATSU MATSUMARU~

Summary—This paper treats the reflection of linearly and sinus-

oidally tapered waveguides. In the first part, reflection coefficients

of linearly tapered waveguides for dominant modes are calculated.

Graphs of the vswr of tapers for different impedance ratios are

plotted showing that the vswr dbes not go to unity at multiples of a

half wavelength. In the second part, reflection coefficients of sinus-

oidally tapered waveguides are calculated. Experimental data verify

the theory for both kinds of tapers of various lengths at 4 kmc band.

Linear tapers perform almost as well as exponential tapers, and

better than shorter hyperbolic tapers. The reflection coefficients of

sinusoidal tapers can be about half as small as that of the linear

tapers, and these tapers compare favorably with the Dolph-Tcheby-

cheff and the Willis taper of improved design.

INTRODUCTION

EFLECTION coefficients of tapered waveguides

R
can be calculated by formulas described in the

references,l ‘z but these formulas give only rough

values. Reflections of several nonuniform transmission

lines were theoretically treated by Burrow,s Scott,4
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Klopfenstein, 5 Collin,G’7 Willis and Sinha,8 Bolinder, g”O

and others. Most papers treat the magnitudes of re-

flection coefficient of particular tapers that are mathe-

matically convenient to analyze, but in microwave cir-

cuit we often need practical formulas and (convenient

graphs to determine the reflection coefficients. Tlhesc

several papers are mainly theoretical, with very limited

experimental data on tapered waveguides.

In the first part of this paper, approximate theor-

etical calculations of the reflection coefficient of linear

tapers are presented. From the derived formulas, useful

graphs were compiled in terms of the suitable raticls of

input-to-output surge impedances, To confirm the for-

mulas experimentally at 4 kmc, we have made two

groups of tapers in which the ratios of surge impedances

are 2.0 and 2.4. The agreement between calculated and
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measured values of reflection coefficient was found to

be very good.

A sinusoidally tapered waveguide may be used to

shorten the length of the taper. In the later part of this

paper general formulas for the reflection coefficients of

these tapers are described. To confirm the formulas, we

made a third group of tapers in which the ratio of input-

to-output surge impedance is 2.4. The calculated curve

of reflection coefficient of these tapers agreed very well

with that of the observed. Bolinder was the first to de-

rive accurate formulas for linear and sinusoidal tapers.

While his results are in terms of magnitude of the re-

flection coefficient, we have derived explicit formulas of

complex reflection coefficients of tapered waveguides.

By means of our practical charts, we can easily deter-

mine the exact reflection coefficient of a tapered wave-

guide.

CALCULATIONS AND CHARACTERISTICS OF

REFLECTION COEFFICIENT OF LINEARLY

TAPERED WAVEGUIDE

In Fig. 1 (a), WI and Wz are rectangular waveguides,

which are connected by an E-plane linear taper. The

surge impedances of WI and W2 and the taper are Zl,

22, and Z(x), respectively. The origin of x is at the

longitudinal center of the taper, and the length of the

taper is 1. Let us assume that the Z(x) is a linear func-

tion of the variable x and 21 is larger than 22, viz.,

ZI>Z2, (1)

z, + z, z, – z,
z(x) =

2
+ ~ x. (2)

Furthermore, we assume that 21, 2s, and Z(x) are

positive real. In Fig. 1 (b) two transmission circuits

whose surge impedances are 21’ and Zsf, are connected

by a step discontinuity. If the electromagnetic wave

propagates from left to right, the element of reflection

coefficient dR is given by (3) when 21’ is only slightly

different from Z2’. It is

Z2’– Z1’ dzl’
dR = —

Z2’ + 21’ – 221’ “
(3)

By considering the phase difference, we can obtain R of

the taper of Fig. 1 (a) by the following integration pro-

cedure. With

Z2– ZI
dZ = dz,

1

112 e–i2B (2+112)

R=~ s Z2 – ZI

2 _l/2 Z1 + Z2 Z2– Z1” i
dx. (4)

+ x
2 1

WI

(b)

Fig. I—Illustration of the coordinate in a taper.

The wavelength in the taper, 10 is constant, and ~ is

2~/&. Putting

2(z~–zJ
——

g = (z, + 2,)1 ‘

(4) becomes

2.2– ZI
s

1/2 e–j2j3(=+t/2)

R= dx.
(z, + 2,)1 -,,, 1 + (p

(5)

As a first approximation, we consider (5) when q is

negligibly small. In this case, the taper may be consid-

ered an exponential one. Then,

This result is identical with the equation given by

Ragan.z T’alues of I R I derived from (6) show that the

reflection coefficient reduces to zero at the minimum

points. Eq. (6) is not applicable for general cases when

q is not equal to zero. To acquire a more accurate and

useful equation, we must integrate (5) by considering q

properly.

By using the approximate relation,

1
—*1–gx+qZxz,
I+qx

(7)

we have from (5)

1sin @. cos /31(1 + q212/4)

+ (1 cos @ – sin @/(3) ]

Z2– ZI
R=

X (–q sin @/2 + q2 cos @/2~)

(Z2 + Z,)pl fs.in’ 61(1+ q212/4) ] “(8)

II ‘.i + (1 cos @ – sin fll/@)

II[ X (q coS,B1/2 + q2 sin@/2fl) j

This equation is identical with (6) when we put q= O.

From the explicit formula (8) we can easily calculate a

magnitude of R of a taper. Eq. (8) was derived on the

base of assumption (1). We may also use this formula

for the case of Zs > Z1. However, except for extremely

short tapers, the calculated magnitudes of R are equal

for both the input and output sides.
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Fig. 2—Curves show vswr’s of linearly tapered waveguides
calculated from (8) with 21/22 as the parameter.
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Fig. 3—Method of taper design.

Placing values of 21, 22, and 1 in (8), we can calcul~lte

the vswr of a taper from the relationship,

I+ [R]

‘swr=l–l Rl.

Fig. 2 shows graphs of calculated vswr’s fcm various

values of z1/zZ. It is to be noted that usually the re-

quired bandwidths for microwave systems are rela-

tively narrow, thus the method of design c,f a taper

will be mentioned here. Let us suppose that for a given

value of Z1/Z.Z, the vswr is as shown in Fig. 3. If the

allowable value of the vswr is u., we draw a horizontal

line across a.. By estimating widths of AL1, AL2, etc.,

we can determine the necessary length of the taper.

Now, we compare the reflection characteristics of

a linear taper with that of others. First, we com-

pare the I R I calculated from (8) with that. given in

Bolinder’s paper. 11 In Table 1, a very good compari!~on

is shown for the case of Z1/Z2 = 2.0. Bolinder’s for-

mula is expressed in terms of complicated Bessel func-

tions and gives only the magnitude of R. It is believed

that our formula fol R in (8), being simpler and virtually

as accurate, will prove to be more practical for designing

of a taper. Next, Klopfenstein5 described the perform-

ances of exponential, hyperbolic, and Dolph-Tchebycl:leff

coaxial tapers for the case of -Z/ZZ = 1.5. Fig. 4 co’m-

pares the performance of the linear taper with these

TABLE I
—— ..———

l/Ag 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 13 1.4

(8) 0.28 0.18 0.09 0.04 0.07 0.08 0.07 0.04 0.02 0.03 —0 .05 0,04 0,03

IRI —–
Bolinder

——.—— —.. —

0.27 0.17 0.09 0.04 0.07 0.08 0.07 0.04 0.03 0.04 0.05 0,04 0.03
I I I I I I

0.2.
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Fig. 4—Performances of linear taper (21/22= 1.5). a: hyperbolic,
11:exponential, c: Dolph-Tchebycheff, d: linear,

three other types. It is shown that the reflection of

a linear taper is not too different from an exponential

one. The reflection of the Dolph-Tchebycheff taper

is shown to be much better than the linear, but this

should be confirmed experimentally. The hyperbolic

taper is disadvantageous for waveguide a!pplicatons.

Briefly the conclusion is that, in most cases, a linear

taper may be substituted for an exponential.

For microwaves applications, one should use a re-

flection formula of a tapered transmission line which

has been experimentally verified. The reasons are as

follows. Most theoretical formulas are approximations

derived on the bases of assumptions. For example, the

waves propagating in waveguides are not TEM in char-

acter. The definition of a surge impedance of a wiave-

11Bolinder, i~id., p. 67 (Fig. 27).
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guide is merely formal. Strictly speaking, the equivalent

circuit of a taper is composed of many reactance, and

hence it is frequency dependent. Moreover, higher

modes may be induced in the output or input terminals.

For example, LewinL2 treated the reflection cancella-

tion at junctions between waveguides and horns. The

calculated values of reflection coefficient cannot be ac-

curate for extremely short tapers, of course, and it is im-

portant to determine the minimum lengths for which

the formulas may be used. For these reasons, we deter-

mined to get experimental data. We performed experi-

ments at 4 kmc, because this band is most convenient

in view of the precision of measurements available at

our laboratory.

EXPERIMENTS—PART I (Zz/Zl = 2.0)

For a dominant mode in a waveguide of constant

width a, the surge impedance is proportional to the

height b.ls The first experiments were made for the case

that Z.JZ1 is 2.0, That is, the internal sizes, b and a. of

the waveguides were 58.1 mm x.58.1 mm and 29.1 mm

X58. 1 mm. Lengths of tapers were from 17 cm to 2 cm

at intervals of 1 cm. Accuracy of internal sizes in

the plane of flanges was approximately i- 0.2 mm. The

vswr was measured on the rectangular side using a

specially made sliding wooden dummy load on the

square side. The residual vswr of this dummy load was

approximately 1.01 at this band. We eliminated errors

due to this load by shifting its position. The law of the

crystal on the standing-wave device was measured. The

data were taken at a frequency of 4 kmc (h. = 9.82 cm).

Observed and calculated results are shown in Fig. 5, to-

gether with other data. Observed points shown by white

circles coincide well with the dashed curve for tapers

longer than 0.5 A,. The mean error in the vswr of-the

tapers longer than 0.5 A. was as small as 0.005. In this

example 22 is larger than 21, so that, the calculated

magnitudes of vswr are not equal to the curve c shown

in Fig. 2. However, the deviations of vswr from that

curve are extremely small, We may use Fig. 2 for this

example. It is believed that graphs of Fig. 2 are generally

inapplicable for tapers shorter than 0.5 hg. So, it is im-

portant to determine the minimum lengths for which

other authors’ formulas may be used.

EXPERIMENTS—PART 11 (2,/22= 2.4)

We measured vswr’s of another group of tapers con-

necting waveguides with internal dimensions of 29,1 mm

X58.1 mm and 12,0 mm x.58.1 mm, for which Z1/Z2

is almost 2.4. Lengths of this group are from 20 cm to

3 cm at intervals of 1 cm. The constructional accuracy

of this group is not as good as the first group; namdy

almost ~ 0.35 mm. Measurements were made at a fre-

lZ L. Lewin, “Reflection cancellation in waveguides, ” Wireless
Eng., vol. 10, pp. 258-264; August, 1949.

It A. Schelkunoff, “Electromagnetic Waves, ” D. Van Nostrand
Co., Inc., New York, N. Y., pp. 316-322; 1943.

JIEB//
‘iC “.

Fig. 5—Results of measurements of vswr of linear tapers. White
circles show observed values, and the dashed curve the calculated.
The ratio of Zz/Zl is 2.0. Black circles and the solid curve show
the corresponding values for the ratio of Z1/Zj equal to 2.4.

+---~ ---?

Fig. 6—Illustration of the coordinate in a taper,

quency of 3960 mc; that is, & was almost 10.0 cm. Fig.

5 shows the results. Black circles show observed values

and the solid curve the calculated. In this group, again,

the results coincide well for tapers longer than 0.5&.

Deviations are slightly greater than the first group; the

mean error of the vswr is as small as 0.008.

CALCULATION OF REFLECTION COEFFICIENT

OF SINUSOIDALLY TAPERED WAVEGUIDE

We calculate the reflection coefficient of a sinusoid-

ally tapered waveguide for the dominant mode in the

same way as that for the linearly tapered waveguide.

The width a of a rectangular waveguide is constant,

and its height b varies sinusoidally as shown in Fig. 6.

We assume that 21, 22, and Z(x) are positive real and

Z, is greater than 22, thus,

21>22. (9)

z, + z,
z(x) =

22– ZI TX

2–2 ()
Cos — .

1
(lo)

From (10),
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7T(Z2— ZJ oTX
dz(%) .—-i—sin ~ dx. (11)

Thus, if the electromagnetic wave propagates from left

to right, R of the taper in Fig. 6 can be obtained, after

considering the phase factor, from

R= J7r(z2 — 21) z e–~z~’ sin (7rx/1)
—. dx. (12)

21(22 + z,) o 22 – 21 7r.v
l–

()
—– Cos —
22 + z, 1

To evaluate this integral, we put

,21– z,,//= —. .
22 + ZI

As I Y \ is smaller than unity, we have

1

()

Tx
L% I-vcos y

()

TX
l+rcos ~

()

TX
+ r’ COS’ ~ .

Using this approximate relation, we obtain

R=
s

7(22 — 21) 2
—

()
~–72B. ~i~ —-

21(2, + 21) ,

“{1 -r’osci?+’’’oiw’

On evaluating (14) we find

(13)

(14)

R=
7r(z2 — 21)

21(Z9 + z,)

It is clear that (15) is a function of r and Z/A,. As a check,

we put Y=O in (14), and (15) is given by

~=~zrzl ()21rl
—– Cos —

2 22+-21 Ag

x{Cos(+%sin(?)}

In this equation, if 1 tends to zero, R becomes

22 – 21
R=——.

z,+ 21

So, (15) converges to the reflection coefficient of two

directly connected waveguides. In Fig. 7, curves SIIIOW

vswr’s for various values of 21/22, corresponding to

those in Fig. 2. It should be mentioned that the curves

of the vswr do not go to unity at the minim urn points

and their maximum points ascend in accordance with

the ratios of 21/22. As for a linear taper, Fig. 7 may be

used for the case of 22> Z1. The reflection character

described in this chart shows clearly the very high qual-

ity of these tapers. It is mentioned that the vswr’s in-

crease suddenly for tapers shorter than O. 7Ag.

27r 6ir

+$sin2 ~ —— —

(‘) e)%)

6T
—

7

‘+H’=()2T~-
—

-1;

—.—

(15)
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Fig. 7—Curves show vswr’s of sinusoidally tapered waveguide as
the parameter of ZI/Zl. The impedance ratios are 1.3 to 3.8.

Thus, for approximately equivalent performance, the

sinusoidal taper can be made about half as long as the

linear taper. Next, we compare the sinusoidal taper

with the taper which was described in Willis and Sinha’s

paper. 15 In this case, zl/,z2 is equal to 2.0. Fig. 8 shows

reflection coefficients of both tapers. The length of the

sinusoidal tapers is almost 0.65 A. for I R / equal to 0.042

as compared with 0.5 & for the Willis taper, but this is

compensated by a faster reflection drop-off in the sinus-

oidal taper. Lastly, we compare the sinusoidal taper

with the taper which was described in Klopfenstein’s

paper.lb Fig. 9 shows reflection performances of both

tapers. The Dolph-Tchebycheff taper appears to be

somewhat better, but not by a major degree. Thus from

Figs. 8 and 9 we see that as to the reflection character,

a sinusoidal taper compares well with several kinds of

tapers designed by more difficult methods. Conse-

quently, for many applications the sinusoidal taper

would be preferable from the standpoint of design sim-

plicity coupled with adequate performance.

EXPERIMENTS—PART III (Z,/Z, = 2.4)

As the second group, we experimented for the case

that Z1/Z2 is 2.4. To confirm the formulas, it appears

most favorable to use taper lengths near the first mini-

mum point of the vswr curve, so that lengths from 0.5

~, to 1.0 & with intervals of 1 cm were used. The ac-

curacy of measurements was, on the whole, improved

TABLE II

l]kg 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

(15) 1.24 1.14
VSWP. —

1.06 1.05 1.06 1.06 1.04 1.02 1.01 1.02 1.02

Bolinder 1.25 1.13 1.07 1.05 1.06 1.06 1.03 1.01 1.02 1.03 1.02

TABLE III

Length (cm) 10 11 12 13 14 1.5 16 17 18 19 20

Linear. 1.04
VSWR ———

1.07 1.10 1.09 1.05 1.02 1.05 1.07 1.06 1.04 1.02

Sinu. 1.06 1.04 1.02 1.01 1.02 1.02 1.02 1.01 1.01 1.01 1.01

COMPARISON WITH OTHER TAPERS

Now, for the case of Z1/Z2 = 2.0, we show the vswr’s

from (15) with those calculated from Bolinder’s paper14

in Table III. The agreement of the two sets of values k

very good. We next compare sinusoidal tapers with

linear tapers. As an example, let us consider a wave-

guide wavelength Ag of 10 cm. The vswr of these two

tapers are given in Table III for 21/22 equal to 2.0.

compared to that of the two previous groups, Measure-

ments were also made at 3.96 kmc. The results are ex-

pressed in Table IV and show excellent agreement. As

shown by the curve d in Fig. 7, the observed values of

vswr yield a minimum near the taper length of 0.75 1~

and a maximum near 0.9 Ag. It is believed that the

mean error in the vswr of tapers longer than 0.8 Xf, is

about as small as 0.01.

M f301in&r op. cit.,Trans. Roy. Inst. Tech., Stockholm, p. 65 15w~lli~ and Sinha, op. Cd. (1% 3).
(Fig. 26). ‘ ICK]opfenstein, op. cd. (Fig. 6).
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Fig. 8—Reflection coefficient as a function of J/A, for the example of
Willis and Sinha’s paper and sinusoidal taper. Solid line: sinus-
oidal, and dashed line: the Willis taper.

CONCLtJSIOiN

The reflection coefficient of a linearly and a sinusoid-

ally tapered waveguide can be calculated quite ac-

curately by (8) and (15), respectively. Except for ex-

tremely short tapers, the calculated magnitudes of R are

equal for both the input and output sides. For most

cases, however, we may directly determine vswr’s by

means of the graphs described in Fig. 2 and 7. Both the

observed values of the vswr of linear tapers longer than

0.5 & and sinusoidal tapers longer than 0.8 & coincide

with calculated values at most within the limit of 0.01.

The effect of neglecting higher terms in (8) and (15) is

very small, so that (8) and (15) are generally sufficient

for practical uses.
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Fig. 9—Reflection coefficient as a function of l/xX for the
Dolph-Tchebycheff taper and sinusoidal taper.

TABLE IV

l/),g 05 0.6 0.7 0.8 0.9 1.0

Ohs. 1.38 1.11 1.06 1.07 1.08 1.07
VS\\’R

Cal. 1.26 1.16 1.08 1.07 1.08 1.07

The reflection performance of a linear taper is almost

as good as an exponential one, and a sinusoidal taper

is comparable to the Dolph-Tchebycheff and the Willis

taper of improved design.
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